
HARDWARE-AWARE TRANSFORMABLE ARCHITECTURE SEARCH
WITH EFFICIENT SEARCH SPACE

Yuhang Jiang1, Xin Wang2, Wenwu Zhu1,2

1Tsinghua-Berkeley Shenzhen Institute, Tsinghua University
2 Department of Computer Science and Technology, Tsinghua University

jyh17@mails.tsinghua.edu.cn, {xin wang, wwzhu}@tsinghua.edu.cn

ABSTRACT

While Neural Architecture Search (NAS) discovers the op-

timal topology structure, Transformable Architecture Search

(TAS) aims to search for the best width and depth, which is

more challenging due to the larger search space. Since FLOPs

is inconsistent with the actual latency, hardware-aware TAS

uses the inference latency to evaluate the efficiency. However,

most existing work focuses on the search strategy, ignoring

the critical role of the search space in affecting the actual ef-

ficiency. Motivated by it, we study hardware-aware TAS by

considering the search space, to the best of our knowledge, for

the first time. We propose a hardware-aware transformable

architecture search (HTAS) framework to discover the op-

timal architecture for different hardware. The core of our

method is a novel hardware-aware search space, which pro-

vides efficient channel choices for the search strategy to sam-

ple efficient architectures. Experiments on CIFAR datasets

demonstrate the superiority of HTAS over the state-of-the-art

method.

Index Terms— Deep Learning; Neural Architecture

Search; Transformable Architecture Search; Hardware-aware

1. INTRODUCTION

Deep neural networks have become indispensable in lots

of application. The performance of neural networks heav-

ily relies on their architectures, given that different designs

of the neural architectures have significant impacts on the

performance. Nevertheless, finding the optimal architecture

among a large number of candidates is intractable to hu-

man, motivating the advent of Neural Architecture Search

(NAS) [1, 2, 3, 4] which is capable of automatically searching

for the best neural network with the optimal structure.

Most existing work on NAS targets at discovering the op-

timal topological structure of a neural network including the

operator type and the kernel size in each layer, while the width

(number of output channels) and depth (number of layers) of

the backbone architecture are fixed. However, the width and

depth also have a significant influence on the performance of

the neural network. The neural network with a wider width

and deeper depth usually has higher accuracy but also more

computation cost. Therefore, to achieve a trade-off between

accuracy and efficiency or adapt to different tasks, Trans-

formable Architecture Search (TAS) [5] adjusts the network

size, through searching for the best width and depth config-

uration for the network backbone. However, the number of

candidate width values is usually much larger than that of

candidate operator types, which makes the search space of

TAS much larger and more challenging to explore than that

of NAS.

Besides, in the real application, the actual efficiency of the

model such as inference latency varies on different hardware

devices, due to their different characteristics. As rapidly in-

creasing kinds of hardware are equipped with neural networks

nowadays, there yields a strong urge for studying the more

challenging hardware-aware TAS problem in both academy

and industry. However, most existing works on TAS adopt

hardware-agnostic metrics such as FLOPs to measure the

model efficiency or estimate the inference latency, causing

inconsistency between these hardware-agnostic metrics and

the actual efficiency on real hardware. For example, lower

FLOPs does not mean lower inference latency or energy.

Other works on hardware-aware TAS [6], consider the infer-

ence latency primarily through improving the search strategy
by regularizing the loss function with hardware-aware regu-

larizers, such as the expected inference latency, which ignores

that the search space plays an important role in affecting the

actual efficiency of the searched networks [1, 7].

To tackle these challenges, we study hardware-aware TAS

by considering the hardware-aware search space simultane-

ously in this paper. We propose a hardware-aware trans-

formable architecture search (HTAS) method to discover the

optimal architectures for different hardware. Specifically, we

first expand the global search space to include more width

candidates. Then we select a subset of efficient width choices

from the global search space, and construct a hardware-aware

search space for TAS, which will be detailedly discussed in

section 3.2. Finally, we utilize the differentiable search strat-

egy to find the best width as well as depth configurations for

the neural network.

978-1-7281-1331- 9/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:38:01 UTC from IEEE Xplore. Restrictions apply.

We evaluate our proposed method on two CIFAR datasets,

and the experimental results show that HTAS can discover

more efficient architectures with competitive or higher accu-

racy than the state-of-the-art method. For ResNet110 on CI-

FAR100, our method is 2.2× faster than TAS [5] on both GPU

and CPU, while improving the accuracy by more than 1.3%.

For ResNet32 on CIFAR10, HTAS also reaches 1.9× accel-

eration with higher accuracy.

We summarize our contributions as follows:

• We propose a hardware-aware transformable architec-

ture search (HTAS) method. It constructs a novel

hardware-aware search space for the search strategy to

dicover the optimal neural architecture for the hard-

ware, while requires no detailed knowledge of the hard-

ware. To the best of our knowledge, this is the first

exploration of hardware-aware TAS by considering the

efficient search space to find the optimal archietcture.

• Experiments show that HTAS outperforms the state-of-

the-art method on CIFAR datasets and different hard-

ware, demonstrating the effectiveness of our method.

We also compare the models searched on different

hardware, which shows the necessity to design the neu-

ral network specialized for different target hardware.

2. RELATED WORK

It is a vibrant field to design efficient neural networks. We

summarize the related work in this section.

Channel pruning studies the pruning of filters and thus

reduces the width of networks. Most channel pruning meth-

ods [8, 9, 10, 11] utilize heuristics as the importance metrics

to determine which channels to be pruned. For example, [8]

leverages the scaling factor of the batch normalization layer.

ThiNet [9] guides the channel pruning with the feature map

of the next layer. However, the human-designed rules may

lead to a sub-optimal architecture, so our method applies the

search method to explicitly learn the optimal width and depth

of efficient neural architectures.

Neural architecture search (NAS) [2, 1, 12, 3, 4, 13]

mostly aims to search for the topology structure of a neural

network. [13, 12] propose to utilize evolutionary algorithm to

search for neural architecture, while [2, 14] use reinforcement

learning. These methods usually require high computation

cost for search, while [1, 4, 3] apply differentiable methods

to explore the search space, which reduces the search cost

dramatically. Apart from the topology structure, the width

and depth are also crucial to the performance of the network.

Hence, we target at discovering the best width and depth for

the neural network automatically.

Transformable architecture search (TAS) [5, 15, 6, 16]

adjusts the width and depth of networks to achieve better

performance. TAS [5] applies differentiable NAS to reduce

the width and depth to get more compact networks, and per-

form knowledge transfer to the searched architecture. Mor-

phNet [15] shrinks and expands the neural network alter-

natively to discover the optimal width under resource con-

straints. NetAdapt[6] adapts the network to different hard-

ware with the hardware-aware resource budgets on the loss

function. Most of these methods focus on improving the

search strategy to discover the efficient networks under re-

source constraints, while without much effort on the search

space. Different from them, we pay more attention to the de-

sign of the search space by constructing a hardware-aware

search space, which provides efficient choices for the search

strategy to discover efficient architectures for different hard-

ware.

3. PROPOSED METHOD

In this section, we present our Hardware-aware Trans-
formable Architecture Search (HTAS) method. HTAS con-

sists of three major steps as shown in Fig. 1. First, we

expand the global search space. Second, we select those

hardware-friendly channel numbers as the choices to con-

struct hardware-aware search space. Third, we use differen-

tiable search strategy with latency constraints to search for the

optimal width and depth of the neural network.

3.1. Global search space expansion

The global search space contains all the possible output chan-

nel candidates. Previous transformable architecture search [5,

17] uses a search space limited in the size of the base net-

work, as each layer of a candidate network will not be wider

than that of the base network. However, even if a more ef-

ficient architecture has smaller size, it can be wider than the

original network structure in some layers. It is impossible to

find such an architecture in the limited search space and thus

may lead to finding a sub-optimal neural architecture. Hence,

we expand the global search space to be able to find these

better neural architectures. Motivated by MorphNet [15], we

expand the width of the base network by e times as the up-

per bound of the global search space, which makes the global

search space larger and more flexible.

Tab. 1 lists the expanded global search space in different

stages of ResNets [18] on CIFAR datasets. For example, we

set e as 2, and the global search space of the three stages is

from 1 to 32, 64 and 128 respectively.

3.2. Hardware-aware search space construction

Since the size of the global search space is usually huge, the

search space for the search strategy only consists of the se-

lected choices from the global search space. The search space

of existing TAS methods [5] is mostly generated by the prod-

uct of a set of step-wise ratios and the layer width of the base

network. For example, the channel number of the layers in

2

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:38:01 UTC from IEEE Xplore. Restrictions apply.

2

Latency
measurement

Hardware

Latency
model

Search
strategy

Choice
scorer

Expanded global
search space

Select choice 1

Recommend hardware-friendly
channel choices with high scores

Hardware-aware
search space

choice 1

choice 2

Latency regularizer
on loss function

Measure latency for each
choice on real hardware

Hardware-aware Search Space Construction

Base network

Searched network
Base search

space
split to groups

Application
Scenario

Learn

Fig. 1. The framework of hardware-aware TAS searching for width and depth of a neural network. We first expand the global

search space by e=2 times. Then based on the latency measurements over the channel numbers, the choice scorer recommends

the hardware-friendly channel choices to construct the hardware-aware search space. The final architecture is chosen by the

search strategy with the latency regularizer.

Table 1. Global search space expansion for ResNets on CI-

FAR datasets. ”Output size” and ”Width” denote the resolu-

tion and number of output feature maps in the layer.

Stage Output size Width Global search space

1 32×32 16 {n | 1 ≤ n ≤ 16× e}
2 16×16 32 {n | 1 ≤ n ≤ 32× e}
3 8×8 64 {n | 1 ≤ n ≤ 64× e}

the first stage of Resnet32 is 16, and the ratio can be select

from (0.25, 0.50, 0.75, 1.0), so the search space of the layers

is (4, 8, 12, 16).

However, this kind of search space is trivial and hardware-

agnostic, which ignores the actual efficiency difference be-

tween the channel numbers on the hardware. To be more spe-

cific, it is common to use FLOPs as the metric of the compu-

tation cost to estimate the actual inference latency, but some

channel numbers may be more efficient with lower latency

than their FLOPs expects. In addition, the most efficient chan-

nel choices are usually different on different hardware due to

their diverse hardware designs. Motivated by this, we con-

struct the hardware-aware search space by selecting the effi-

cient channel choices for different hardware.

Here we use how much the actual latency is faster the es-

timated latency as the metric to evaluate the efficiency of the

channel choice. To estimate the latency, we measure the infer-

ence latency of different channel numbers in the global search

space, and then build a latency model f(x) to learn the rela-

tionship between the actual latency and the channel numbers.
We use the following model to estimate the inference la-

tency over the output channel numbers.

f(x) = kxα + b (1)

where x is the output channel number and parameter α is

application-specific constant. Fig. 2 shows the inference la-

tency and the estimated latency over the output channel num-

bers on CPU when the size of the output feature map is 32×32
and α is set as 1.

With the latency model, we can score the channel number

by evaluating the efficiency of the output channel numbers,

which is defined as the difference between the estimated la-

tency and the actual latency. The scoring function s(x) is as

follows.

s(x) = f(x)−m(x) (2)

where m(x) is the measured actual inference latency on real

hardware.
The complexity of different tasks is usually not the same,

which requires models with different capacities to learn. For
instance, the model adapting to ImageNet usually needs a
larger capacity than that on CIFAR-10. On the other hand,
the capacity of a layer in the neural network usually increases
over the output channel number with the input channel num-
ber fixed. To adapt to different tasks, we split the global
search space into g groups in each layer, and each group
has different width choices with different capacities. In each
group, the most efficient channel choice that has the highest

3

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:38:01 UTC from IEEE Xplore. Restrictions apply.

2.5

3.5

4.5

5.5

6.5

7.5

8.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
channel
number

la
te

nc
y/

m
s

Fig. 2. Measure the latency over the global search space and

construct the latency model. Some channel choices are more

efficient, as their actual latency (solid) is lower than the es-

timated latency (dashed). The difference between the actual

latency and the estimated latency is the choice score (arrow).

score will be recommended by the scoring function.

choicej = argmax
x∈Xj

s(x) (3)

where choicej is the channel choice selected from the j-th

group Xj of the global search space X . The scores over the

output channel numbers and the selected channel choices are

shown in Fig. 3.
Finally, we gather these recommended channel choices to-

gether to construct the hardware-aware search space HS.

HS := ∪g
j=1{choicej} (4)

Tab. 2 lists the constructed hardware-aware search space in

each stage of the ResNets on CPU and GPU.

channel
number

sc
or

e/

-0.7

-0.2

0.3

0.8

1.3

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

4

32

5

16

12

20

24

27

group 1 group 2 group 3 group 4 group 6 group 7 group 8group 5

Fig. 3. Select hardware-friendly output channel choices to

construct the hardware-aware search space for CPU. The

dashed lines split the global search space into g=8 groups.

The numbers above the red bars indicate the selected efficient

channel choices with the highest score in each group.

3.3. The search strategy

We apply differentiable search strategy in [5] to explore the
hardware-aware search space in section 3.2. Transformable

Table 2. Hardware-aware search space for CPU and GPU.

Hardware Output size Hardware-aware search space

CPU

32×32 4, 5, 12, 16, 20, 24, 27, 32

16×16 8, 13, 20, 27, 35, 45, 52, 64

8×8 15, 20, 46, 50, 70, 92, 107, 128

GPU

32×32 4, 6, 12, 16, 20, 24, 28, 32

16×16 6, 16, 24, 32, 40, 48, 56, 64

8×8 16, 32, 47, 64, 80, 96, 112, 128

Architecture Search aims to discover the best width and depth
for an architecture A, which minimizes the validation loss
Lval with the network weights optimized on the training
dataset. The above problem can be formulated as

min
A

Lval(ω
∗
A,A) s.t. ω∗

A = argmin
ω

Ltrain(ω,A), (5)

where ω∗
A indicates the optimized weights of A. The training

loss is the cross-entropy classification loss of the networks.
Lval consists of two parts, one is the loss of cross entropy Lce,
another is the loss of computation cost, which is the expected
latency of the network E[latency] in this paper. Note that
we can also evaluate the computation cost with other metrics,
such as energy.

Lval = Lce + λcostE[latency], (6)

E[latency] =
∑

i

E[latencyi] (7)

E[latencyi] = f(E[xi]) (8)

where E[latency] is estimated by the latency model f(x) in

section 3.2, E[latencyi] is the expected latency and E[xi] is

the expected width of the i-th layer.

TAS [5] introduces architecture parameters β for the

width and depth choices, which generate probabilities p for

them. The output is the weighted sum of the output of the

choices, so that they can use gradient-based methods to learn

the architecture parameters β and the weight parameters ω of

the network. The final architecture is generated by selecting

the choices with the maximum β. To reduce the search cost,

we choose the differentiable search strategy, while it is easy

to combine our proposed search space with many other search

strategies such as evolutionary algorithms.

4. EXPERIMENTS AND DISCUSSIONS

4.1. Datasets and settings

Datasets. We demonstrate the effectiveness of our proposed

method on CIFAR-10 and CIFAR-100. CIFAR-10 has 10

classes, including 50K training images and 10K test images

with a resolution of 32×32. CIFAR-100 is similar to CIFAR-

10 except that it contains 100 classes.

4

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:38:01 UTC from IEEE Xplore. Restrictions apply.

Searching and training settings. To construct the hardware-

aware search space, we expand the global search space by

e=2 times. We split the global search space into g=8 groups.

We set α as 1 to learn the latency model and score the chan-

nel choices. When searching the neural architecture and re-

training of the searched neural architecture, we use the same

searching and training setting (including batch size, learning

rate schedule, etc) as [5]. For fair comparison, we utilize the

same knowledge distillation method [19] as in TAS [5] to train

the searched neural architecture. With the pretrained base net-

work as the teacher model, it will transfer knowledge to the

searched architecture.

Latency measurements. We conduct the experiments on

GPU and CPU with PyTorch. Since the image resolution of

CIFAR is 32×32 and relatively small, we use a batch of pic-

tures instead of a single one as the input to measure the in-

ference latency. Furthermore, as GPU is under-utilized with

small batch size, the batch size on GPU is larger than that on

CPU. Concretely, we measure the GPU latency with a batch

size of 1024 on one TitanXP GPU, and the CPU latency under

batch size 4 on a server with two 2.30GHz Intel(R) Xeon(R)

CPU E5-2630 0. Each reported latency number is the mean

of 2000 latency measurements.

Baseline. Prevailing hardware-aware TAS methods mainly

focus on the search strategy, which is orthogonal to our work

focusing on the search space. Hence, we do not compare

HTAS model with those studying the search strategy. Instead,

we choose one state-of-the-art method TAS [5] for compari-

son, and apply the same search strategy to explore the benefit

of our proposed search space.

4.2. Comparison with the state-of-the-art method

Results on CIFAR-10 in Tab. 3.We apply HTAS to search for

ResNets32, 56, 110 on CIFAR-10 and GPU. With competitive

or higher accuracy, our method outperforms TAS [5] in terms

of the inference latency for different depths of ResNet. For

ResNet32, although the FLOPs of HTAS is higher than TAS,

our inference latency of 18.4ms is 1.9× faster than 35.0ms of

TAS with higher accuracy as well. The experiment of search-

ing for ResNet110 shows similar improvements, which also

validates that the FLOPs is inconsistent with the actual effi-

ciency. The speed-up is contributed to the hardware-aware

search space, which provides efficient channel choices that

have lower latency than their FLOPs expect.

Results on CIFAR-100 in Tab. 4. We also search for ResNets

on CIFAR-100 and different hardware, and HTAS achieves

better performance in most cases on both GPU and CPU as

well. When searching for ResNet110 on GPU, the inference

latency of TAS [5] is 90.9ms, while our method obtains a

2.2× speed-up with 41.0ms and 1.35% improvement in ac-

curacy with lower FLOPs. Besides GPU, we observe that

our method also reaches superior performances on CPU. No-

tably, we obtain 74.93% accuracy for ResNet110, which ex-

Table 3. Comparison with the state-of-the-art method for

ResNets on CIFAR-10. ”Dep.” denotes the depth of ResNet.

”CIFAR10” denotes the top-1 accuracy on CIFAR-10. ”GPU”

denotes the inference latency measured on GPU. ”FLOPs”

denotes the number of multiply-adds. ”Param” means the

number of network parameters. Our HTAS achieves lower

inference latency with competitive or higher accuracy for dif-

ferent depths of ResNet.

Dep. Method CIFAR10 GPU FLOPs Param

110
TAS [5] 94.33% 81.6ms 124.0M 0.80M

Ours 94.33% 44.8ms 119.3M 1.57M

56
TAS [5] 93.69% 42.4ms 59.5M 0.45M

Ours 93.42% 31.5ms 58.5M 0.73M

32
TAS [5] 93.16% 35.0ms 35.0M 0.32M

Ours 93.34% 18.4ms 37.7M 0.48M

ceeds TAS [5] by 1.77%, and the inference latency of our

searched architecture is 51.5ms, which is also 2.2× faster than

113.6ms of TAS [5]. Our model searched for ResNet32 is

slightly worse in accuracy but still faster in latency. The pos-

sible reason is that the steps are different between the selected

choices in the hardware-aware search space, which may make

the search strategy more difficult to explore it than the regular

search space with the same step.

We demonstrate the benefits of considering hardware for

the design of the search space through these strong empir-

ical results of our HTAS. In addition, since the size of our

hardware-aware search space is the same as the search space

in [5], the performance improvement of our method requires

no extra searching or training cost.

4.3. Searching models for different hardware

Results of searching models for different hardware in Tab.

5. Previous hardware-agnostic TAS methods deploy the same

architecture to different hardware. Nevertheless, the different

characteristics of different hardware devices may lead to sub-

optimal designs of the neural network.

To validate it, we compare two models searched for GPU

and CPU on CIFAR-100. Then we measure the inference la-

tency of the two models both on GPU and CPU. The searched

models on different hardware achieve the similar accuracy as

72.34% and 72.39%. For ResNet32-G, the inference latency

on its target hardware (GPU) is 21.6ms, while its inference la-

tency hikes to 26.8ms when deployed to CPU. In contrast, for

ResNet32-C, the inference latency on GPU is 23.5ms, higher

than ResNet32-G by 1.9ms. However, when deployed to its

target hardware (CPU), ResNet32-C reaches an inference la-

tency of 24.4ms, which is faster than ResNet32-G by 2.4ms.

This shows that it is necessary to search the specialized archi-

tecture for different target hardware.

5

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:38:01 UTC from IEEE Xplore. Restrictions apply.

Table 4. Comparison with the existing method for ResNets on CIFAR-100. ”Manual” denotes the manually designed ResNets

without searching. ”GPU” and ”CPU” represent that models are searched and measured on GPU and CPU respectively. ”CI-

FAR100” denotes the top-1 accuracy on CIFAR-100, ”Latency” denotes the inference latency measured on this hardware. Our

HTAS finds more efficient architecture with comparable or improved accuracy on both GPU and CPU.

Depth Method
GPU CPU

CIFAR100 Latency FLOPs Param CIFAR100 Latency FLOPs Param

110

Manual 74.51% 144.0ms 253.2M 1.73M 74.51% 196.2ms 253.2M 1.73M

TAS [5] 73.16% 90.9ms 119.6M 0.84M 73.16% 113.6ms 119.6M 0.84M

Ours 74.51% 41.0ms 119.1M 1.71M 74.93% 51.5ms 126.0M 0.84M

56

Manual 73.18% 73.0ms 125.8M 0.86M 73.18% 100.0ms 125.8M 0.86M

TAS [5] 72.25% 44.1ms 61.2M 0.47M 72.25% 59.1ms 61.2M 0.47M

Ours 74.22% 29.7ms 72.9M 0.99M 73.01% 34.9ms 66.8M 0.47M

32

Manual 70.44% 41.8ms 69.1M 0.47M 70.44% 56.6ms 69.1M 0.47M

TAS [5] 72.41% 33.7ms 42.5M 0.43M 72.41% 42.8ms 42.5M 0.43M

Ours 72.34% 21.6ms 47.0M 0.58M 72.39% 24.4ms 47.0M 0.32M

Table 5. HTAS searches efficient models for different hard-

ware on CIFAR-100. ”ResNet32-G” denotes the searched

ResNet32 for GPU, ”ResNet32-C” denotes the searched

ResNet32 for CPU. ”(t)” denotes the searched model is mea-

sured on its target hardware. Both of the searched models are

faster on their target hardware.

Model GPU CPU Top-1 FLOPs

ResNet32-G 21.6ms(t) 26.8ms 72.34% 47.0M

ResNet32-C 23.5ms 24.4ms(t) 72.39% 47.0M

5. CONCLUSION

In this paper, we propose HTAS, a hardware-aware trans-

formable architecture search framework. It constructs a novel

hardware-aware search space for TAS, in which the search

strategy can discover the best width and depth for different

hardware. To the best of our knowledge, this work is the

first effort to explore TAS with the hardware-aware search

space. Our experiments show that HTAS outperforms the

state-of-the-art method on two CIFAR datasets and different

hardware, demonstrating the advantage of our method. In the

future, we hope to improve the method of constructing the

hardware-aware search space and the search strategy.

Acknowledgements. This research is supported by Na-

tional Natural Science Foundation of China Major Project

No.U1611461 and Shenzhen Nanshan District Ling-Hang

Team Grant under No.LHTD20170005. Xin Wang and

Wenwu Zhu are corresponding authors.

6. REFERENCES

[1] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture

search,” in ICLR, 2019.

[2] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement

learning,” in ICLR, 2017.

[3] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,

Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet de-

sign via differentiable neural architecture search,” in CVPR, 2019, pp.

10734–10742.

[4] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture

search on target task and hardware,” in ICLR, 2019.

[5] X. Dong and Y. Yang, “Network pruning via transformable architecture

search,” in NeurIPS, 2019.

[6] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze,

and H. Adam, “Netadapt: Platform-aware neural network adaptation

for mobile applications,” in ECCV, 2018, pp. 285–300.

[7] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and

Q. V. Le, “Mnasnet: Platform-aware neural architecture search for

mobile,” in CVPR, 2019, pp. 2820–2828.

[8] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning

efficient convolutional networks through network slimming,” in CVPR,

2017, pp. 2736–2744.

[9] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method

for deep neural network compression,” in CVPR, 2017, pp. 5058–5066.

[10] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning

filters for efficient convnets,” in ICLR, 2017.

[11] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geo-

metric median for deep convolutional neural networks acceleration,” in

CVPR, 2019, pp. 4340–4349.

[12] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single

path one-shot neural architecture search with uniform sampling,” in

arXiv, 2019.

[13] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution

for image classifier architecture search,” in AAAI, 2019, vol. 33, pp.

4780–4789.

[14] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural

architecture search via parameter sharing,” in ICML, 2018.

[15] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and

E. Choi, “Morphnet: Fast & simple resource-constrained structure

learning of deep networks,” in CVPR, 2018, pp. 1586–1595.

[16] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl

for model compression and acceleration on mobile devices,” in ECCV,

2018, pp. 784–800.

[17] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural

networks,” in ICLR, 2019.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in CVPR, 2016, pp. 770–778.

[19] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a

neural network,” in NeurIPS-W, 2014.

6

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:38:01 UTC from IEEE Xplore. Restrictions apply.

